

REWIRED Outcompeting in the age of digital and AI

Trinity Washington University Symposium on Artificial Intelligence October 27, 2023

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

Agenda

What do we mean by AI and Generative AI?

What does it take for a company to successfully deploy Digital & AI?

Why now?

The last decade has witnessed an explosion in data availability

Source: Dave Evans (April 2011) "The Internet of Things: How the Next Evolution of the Internet Is Changing Everything"; McKinsey Analytics; Dave Evans "The Internet of Things: How the Next Evolution of the Internet Is Changing Everything"

Some industries have already reached the tipping point where AI is the new norm

Growth in AI is driven by better algorithms, with GenAI creating greater awareness and urgency around AI

Artificial Intelligence, the science and engineering of making intelligent machines

Intelligence exhibited by machines, which are capable of **mimicking human cognitive functions**, such as understanding language, recognizing objects/sounds and learning, among others

Machine Learning, a major approach to realize AI

Approach to realize Artificial Intelligence – It is a **way of "training" an algorithm** to learn how to make data-driven predictions. "Training" involves feeding huge amounts of data to the algorithm and allowing the algorithm to **improve itself over time**

Deep Learning, a branch of ML

Deep learning is **one of many approaches to machine learning.** It can process a wider range of data resources, requires less data preprocessing by humans, and can often produce more accurate results than traditional machine-learning approaches.

GenAl, a subset of DL

Subset of deep learning that uses structured and unstructured data to produce new content be it text, images, code, or video

Generative AI has accelerated in diffusion and application in 2022

GenAl image wins art prize

Al generated "Théâtre D'opéra Spatial" from Midjourney took first place in the digital category at 2022 Colorado State Fair

Chatbot passes US lawyer bar exam

ChatGPT chatbot by OpenAl generates a text answer to almost any question asked and has also passed US lawyer exam

Code assistant increases productivity by 55%

Github coding assistant Copilot can auto-complete code and even turn text prompts into coding suggestions

Deepfake Pope Francis goes viral

Fake AI-generated photos of Pope Francis in a puffer jacket go viral, highlighting the power and peril of AI Early adoption of Generative AI indicates a major inflection point in the impact of AI in day-to-day life

Adoption rates are reaching scale faster than ever before with users actively engaging with multiple applications

Time to 1 million users¹

1. OpenAI and GitHub data

GenAI is expected to create significant incremental value

Al's potential impact on the global economy, \$ trillion

A strategic view of GenAI

1 Taker	2 Shaper	3 Maker	
Integrate off-the-shelf GenAl solution into workflows	Fine-tune existing GenAI models for custom applications	Develop a new foundational model to solve new problems	
Git Hub Co-pilot	Maintenance support	R&D	
ChatGPT	Sales support tools	Engineering	
	Contact center servicing		
Easy to deploy	Harder than "traditional" Al	Very difficult; unchartered territory	
Little capabilities needed	Requires new competencies	Big investments	
Table stakes	Differentiating	Game changing	

Gen AI has the potential to fundamentally transform the way work gets done – currently 4 archetypes gaining momentum

""

"Al is one of the most profound things we're working on as humanity. It's more profound than fire or electricity."

"GenAl is going to impact every product across every company"

Sundar Pichai, CEO of Google

Use Case Archetypes

1. Content generation Generating tailored content at scale

Example impact

+20%

Increase in conversion rate for a EMEAbased conglomerate (insurance, retail, pharmacy)

2. Code acceleration Decreasing tech debt and delivering SW faster >55%

Productivity gains for developers utilizing coding co-pilots (e.g., Github Copilot)

3. Content synthesis & virtual expert Augmenting employee performance

Productivity gains in verifying statements in news and social media

4. Customer services and engagement

Further simplifying tedious manual processes

>60%

Automation potential of customer interaction volumes over 5-10 years

There are 8 key risk categories associated with the use of generative AI

Risk	Existing risk that manifests in new ways with generative AI Novel risk associated with generative AI		
category	Description of potential risk	Impact of generative AI on risk landscape	
Impaired fairness	Algorithmic bias; lack of accountability behind algorithmic decision-making; misrepresentation of generated content as human-created	Generative AI may project algorithmic bias due to imperfect training data or engineering decisions in development/deployment phase Generative AI can produce content that is not clearly identifiable as AI-generated, leading to confusion or deception of users	
IP infringement	Infringement on copyrighted, trademarked, patented, or otherwise legally protected materials	Generative AI and foundation models typically leverage internet-based data, leading to potential incidents of IP infringement (e.g., copyright violations, plagiarism)	
Privacy concerns	Unauthorized use/disclosure of personal or sensitive information, violating privacy requirements or expectations	Generative AI may heighten privacy concerns through (potentially unintended) use of personal or otherwise sensitive information used for model training, thus generating potentially sensitive outcomes	
Malicious use	AI-generated promulgation of malicious content (e.g., disinformation, fraud)	Generative AI can be leveraged to create and disseminate malicious content (e.g., falsehoods, hate speech, ad campaigns)	
Security threats	Vulnerabilities in generative AI systems that may breached or exploited, leading to security or compliance issues	Generative AI-driven applications may be subject to security vulnerabilities and manipulation (e.g., users or bad actors may bypass safety filters through obfuscation , payload splitting , virtualization)	
Interpretability and reliability challenges	Inability to explain or interpret model outputs appropriately (i.e., the "black box algorithm" problem); model inaccuracies that may result in undesirable outcomes	Generative Al's reliance on neural networks with multitudes of parameters (e.g., trillions) introduces challenges in ability to explain how outcomes were generated Foundation models may generate factually incorrect or outdated answers (e.g., model hallucination)	
ESG impact	Non-compliance with ESG standards; reputational damage from social or environmental consequences of model development and usage	Training and deployment of foundation models may increase carbon emissions and exceed ESG commitments or expectations Generative AI may disrupt or displace workers, introducing new challenges (e.g., reputational risk, talent shortages)	
Third-party risk	Risks associated with the use or integration of third-party AI tools, (e.g., lack of control, dependency, lock-in)	Organizations typically use or integrate external generative Al models and tools instead of developing them internally, imposing novel third-party risks pertaining to model outcomes and dependency	

Key risks can further lead to regulatory, legal, reputational and business consequences

Agenda

What do we mean by AI and Generative AI?

What does it take for a company to successfully deploy Digital & AI?

Companies have had uneven success capturing value from digital and AI

Learning from retail banking

Digital leaders creating competitive distance

📕 Laggards 📃 Leaders

Example: Secured lending

North America - Mining

Freeport-McMoRan: Unlocking new mining production through AI transformation

With a well-defined agile digital roadmap and support from McKinsey's industry and tech experts, Freeport-McMoRan was able to deploy and scale AI technology throughout its mines in the Americas and take its operations to the next level for increased efficiency and production

200 million pounds

Increase in copper production across all mines, equivalent to one new processing facility

\$350-500M EBITDA improvement by scaling AI

\$1.5-2B

The cost of a new processing facility was avoided

Lessons learned

公 0 0 0

- Align ELT to drive roadmap and constantly reinforce Digital as a priority
- Tap into talent's full potential through crossfunctional collaborations

Design modularized tools and platform to enable scalability

""

"One of the key things that McKinsey brought to the table was developing the model with the users in the room, so that they're building ownership and conviction right from the very get go. This helped with the acceptance and the adoption, creating coownership across the team"

Cory Stevens, President, Freeport-McMoRan Mining Services

We started with an AI solution at site #1

Productionized artificial intelligence models advise operators how to optimize the plant every 3 hours

Live anomaly detection and clustering 15-20% total production impact Running independently for ~7 months Highest cost mine to the lowest cost mine >\$100M Capex avoidance

How the AI solution works

Recommendations shift throughput and recovery upward

Ore types change as the shovel works; we identify "ore clusters" and help operators respond

Rewired approach for successful digital transformations, developed from 200+ at-scale transformations

6. Adoption and Scaling

Change

To maximize value capture by ensuring the adoption and scaling of digital & analytics solutions, by building new skills and leadership characteristics, and by tightly managing the transformation progress and risks

Signature moves of REWIRED companies

0.		Stage 2
Stage 1		Rewired
Experimenting		Enterprise-wide business innovation with digital & AI
Experimentation and early successes		>20% EBIT value created, enterprise-wide
<5% EBI1	value created from siloed use cases	
Value Roadmap	Siloed use cases	Business-led roadmap, C-suite owned plan
Talent	Pockets of digital hires	Sweeping shift in talent mix
Operating model	Side cars	Product & Platform model
Technology	Centralized	Distributed, easy to use
Data	Controlled by data specialists	Embedded everywhere, easy to consume
Adoption and scaling	Last mile challenges	Business owned and architected to scale